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Abstract The neural networks, which are a model of how the brain works, are well known as universal approximators. This 
article takes advantage of such characteristic on presenting an alternative way for reconstituting a sounding rocket trajectory, in-
stead of using the conventional approach, which spends too much effort. The basic idea is concerned to the use of a neural net-
work to map the difference between nominal and actual flight curves, solving drop-outs, which are occasioned by malfunctions 
and atmospheric conditions. 
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1   Introduction 

A rocket launch mission takes into account three 
main aspects. The first one is concerned to the pay-
load experiments. The second one is the rocket that 
meets the mission requirements. The third one is the 
launch infra-structure that encompasses the systems 
to track the rocket, such as the telemetry and radar 
systems. In Brazil, the priority is the radar. There are 
at least two radar systems, one for proximity and an-
other one for accuracy. Both provide the instantane-
ous rocket position and velocity. They should carry 
out without halts, but tracking interruptions could 
occur due to atmospheric conditions, malfunctions 
and so on. Such problem happened with the first 
flight of the Brazilian rocket VSB-30, during its 
launch operation in Alcantara Launch Center (CLA), 
in Brazil, October 2004. 

When the tracking vanishes simultaneously in 
both radars, they are guided by the information of the 
nominal trajectory, in order to retry the tracking. 

After the flight, the post-flight analysis starts. 
The Subdivision of Flight Dynamics of the Institute 
of Aeronautics and Space, in Brazil, is responsible 
for studying the trajectory of Brazilian rockets and 
performing its post-flight analysis. In order to carry 
out such analysis, computational applications are 
employed. Among those applications, it is the Rocket 
Simulation >> ROSI << for trajectory calculation [6] 
[3]. If the actual trajectory is not quite tracked by the 
radars, it is performed its reconstitution by using the 
ROSI and updating its input data with actual condi-
tions. 

This paper treats with a typical problem of signal 
loss, or drop-out. At the time that the radars fails to 
track the rocket, the nominal characteristics of the 
flight are not realized in the actual trajectory. There-

fore, the ROSI is employed to reconstitute such char-
acteristics. But, the complexity of the reconstitution 
using the ROSI is high and increases with the pres-
ence of noise and when burning and atmosphere 
phases are taken into account in the drop-out segment 
of the actual trajectory [7]. Despite the fact that the 
ROSI takes too much effort in order to reconstitute a 
trajectory, it is the most accurate approach because it 
uses analytical models. 

2   The Proposed Approach 

Searching by an approach with low complexity, this 
paper introduces the use of neural networks in order 
to reconstitute the trajectory of a sounding rocket, 
instead of using the ROSI. The basic idea is to map 
the difference from both nominal and actual trajec-
tory curves by using a multilayer perceptron, and 
reconstitute the occluded nominal characteristics, that 
are not realized in the actual curve (Fig. 1). 

The actual curve reconstitution is obtained by an 
interpolation of the difference between the nominal 
and actual curves in the drop-out segment. Such in-
terpolation should result in a good generalization of 
the difference between the curves in that segment. 
This is the goal to be achieved in the multilayer per-
ceptron training. 

The topology of the neural network, the size of 
the training set and the complexity of the physical 
problem influence the capability of the neural net-
work for generalizing [4]. This is a reason for train-
ing different topologies and sampling data for train-
ing and testing in different manners. 

In order to set different topologies through the 
arguments of the neural network algorithm, the neural 
units are identified sequentially, in an array, from 1 to 
q (Fig. 2). In this manner, the multilayer perceptron is 
defined by changing the following arguments: the 



number of hidden layers and units per layer. This 
way, the best one among the topologies, which has 
the best generalization, can be chosen. 
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Figure 1. The Definition of the Nominal and Actual Curves. 

In order to minimize the mean-squared error in 
the output of the unit 1 by adapting the synaptic 
weights of the multilayer perceptron, the backpropa-
gation algorithm is employed for training the neural 
network. Such algorithm was developed by David E. 
Rumelhart, Geoffrey E. Hinton and Ronald J. Wil-
liams, in 1986. The term is an abbreviation for 
“backwards propagation of errors” [4]. The error is 
calculated with respect to the difference from both 
nominal and actual trajectory curves. 
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Figure 2. The Neural Network Topology Definition. 

The algorithm, which follows, describes in detail 
the preprocessing into the training steps of the multi-
layer perceptron that employs a linear interpolation to 
estimate the difference between nominal and actual 
curves (not including the drop-out segment). 

Such linear interpolation is employed because 
both curves are given in a discrete set of points. Even 
though it is possible to require their synchronization, 
this study takes into account that they are not sup-
posed to match in the same abscissa. 

Because of the difference between the curves is 
addressed to the same abscissa, it is necessary to es-
timate such difference by an interpolation. 

Step 0: The steps from 1 to 10 are repeated until 
the mean-squared error (5) has started to converge 
asymptotically or the number of epochs be greater 
than what was previously defined. 

Step 1: For each nominal input pattern ( )Nx i , 

1,...,i n= , the steps from 2 to 8 are carried out. 

Step 2: The nominal input ( )Nx i  is presented to 

the neural network that gives the result of its activa-
tion y. 

Step 3: The actual input data ( )Rx j−  and 

( )Rx j+ , where 1j j+ −= + , are found so that 

( ) ( ) ( )R N Rx j x i x j− +≤ ≤ . 

If ( )Rx j−  or ( )Rx j+  does not exist, the value 

1−  is assigned to the respective index as a flag to 
remind that at the step 6. For instance, it might come 
as the following: 

( ) ( )1 1 1N Rx i x j j− +≤ ⇒ = − ∧ = , or 

( ) ( ) 1R Nx r x i j r j− +≤ ⇒ = ∧ = −  

Step 4: The indices i −  and i +  with respect to the 
nominal input data, which are respectively closest 
from the lowest and highest Rx , are found. 
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Step 5: The nominal output data with respect to 
the indices that were found in step 4 are assigned to 

Nd−  and Nd+ . 

 ( )N Nd d i− −=  and ( )N Nd d i+ +=  (2) 

Step 6: The difference from nominal and actual 
curve d∆  is calculated, using a linear interpolation. 

P∆  is the set of patterns that estimates the differ-

ence from nominal and actual curves (Fig. 3). 

If 1j ± ≠ −  is true, the difference ( )d i∆  is calcu-

lated by a linear interpolation (3). 
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Figure 3. The Definition of the Difference Between Nominal and 
Actual Curves. 
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On the other hand, if 1j + = −  or 1j − = −  is true, 

d∆  is the difference between the outputs of the clos-

est nominal and actual inputs as follows: 
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Step 7: The error in the output of the neural net-
work is calculated. 

Step 8: The backpropagation algorithm is car-
ried out to adapt the synaptic weights of the neural 
network. 

Step 9: The mean-squared error is calculated (5). 
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Where ke  is the error in the output unit with re-

spect to the output pattern of index k . 
Step 10: The terminal condition is verified. 
The presented algorithm describes the preproc-

essing. But, its implementation should take into ac-
count the computational efficiency. This way, the 
estimated output patterns P∆  for training the multi-

layer perceptron should be obtained before carrying 
out the training algorithm by finding and keeping the 
indices ( )j i−  and ( )j i+ , 1,...,i n= , as well as Nd−  

and Nd+ . 

Besides, it is emphasized that the preprocessing 
does not interpolate the drop-out segment. This is 
done by the neural network. 

3   Application 

In order to demonstrate the proposed approach and 
verify for which conditions it diverges, a drop-out has 
been provoked on a quite covered flight, such as the 
second one of the VSB-30 (Fig. 4), so that it is possi-
ble to calculate the error with respect to the omitted 
part of the actual trajectory. 

In addition, an enhanced approach is briefly 
mentioned, in the ending of this topic, for further 
studies. 

As a first case study, a single curve has been 
taken from the trajectory of the VSB-30, which is 
relevant at all for post-flight analysis, the total veloc-
ity of the rocket as a function of time (Fig. 5). 

The reconstitution of the total velocity data is 
preferable to the position data because the second 
one is obtained by a numerical integration of the first 
one. It follows that a numerical integration is more 
desirable than a numerical differentiation [1], which 

is what would occur in the opposite chosen. Never-
theless, the difference of signal quality between the 
position and velocity data can define what data 
should be used in the reconstitution. 

 

Figure 4. VSB-30. 

The post-flight analysis uses the position and ve-
locity data in order to provide the following magni-
tudes: altitude, downrange, flight azimuth and eleva-
tion, Mach number, dynamic pressure, splashdown 
impacts and so on. 

 

Figure 5. The Nominal Total Velocity. 

The second flight of the VSB-30 has spent 550 
seconds. In the current case study, a drop-out on the 
total velocity actual data, which is slightly different 
from the nominal data, has been provoked from 100 
to 300 seconds of the flight. In fact, such simulation 
is more than what is expected if it is taken into ac-
count the radar system capability to recover the track-
ing upon 200 seconds of drop-out. This simulates a 
condition that is itself an upper limitation for the ra-
dar system (Fig. 7). 

The neural network training has been success-
fully carried out (Fig. 8). It was used a multilayer 
perceptron with three hidden layers and eight units 
per layer (Fig. 6). 



In order to have good results in such application, 
a good generalization is important. This is the reason 
of trying network topologies with more than a single 
hidden layer. Although the universal approximation 
theorem states that a single hidden layer is sufficient 
for a multilayer perceptron to compute an approxima-
tion, the theorem does not say that is sufficient to 
obtain a good generalization [4]. 

 

Figure 6. The Neural Network Topology. 

In order to allow the network to learn more 
quickly when there are plateaus in the error surface 
the backpropagation algorithm has been used with 
momentum (6). The rate of learning η  was 0.1 and 

the momentum α  was 0.5. Synaptic weights w  were 
initialized from a uniform distribution whose mean 
was zero and whose interval of variance was (-1,1). 
 

, where old old

E
w w w w w

w
α η ∂= + ⋅ ∆ + ∆ ∆ = − ⋅

∂
 (6) 

The activation function ( )ϕ ⋅  associated with the 

neural units was the hyperbolic tangent function (7), 
with 1 and 2a b= = . 
 ( ) ( ) ( )tanh , , 0v a b v a bϕ = ⋅ ⋅ >  

v: activation potential of the neuron 
(7) 

In addition, 351 patterns were used for training 
and 350 for its validation. 

 

Figure 7. The Actual Curve with a Drop-out. 

In order to obtain a good generalization, the neu-
ral network topology and the training set size have 
been considered, but the complexity of the physical 
process has not because it is addressed to the sinuosi-
ties of the curve that represents the physical process. 
In some cases, a complexity reduction may be done 

by a logarithmic representation of the data as it is 
seen in a log-log plot. But, here, such approach has 
not worked. 

The relative error, which was achieved after 
13347 epochs of training, was about 3% (with respect 
to the actual curve, Fig. 9). It is figured out that the 
ROSI has better results if compared with the pro-
posed approach. It would be pretty good to compare 
both methods, but it still remains as a suggestion for 
further studies. Despite this, the relative error, which 
was achieved by the neural network, is acceptable for 
a preliminary post-flight analysis. 
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Figure 8. The Neural Network Interpolation. 

One of the characteristics of this problem is that 
the difference from nominal and actual curves may 
present some sinuosities (Fig. 8). This way, the re-
constitution depends on how the peakedness of those 
sinuosities is, because the neural network is not sup-
posed to map them (Fig. 9). 

In a second case study, the actual curve has been 
multiplied by 0.6, a dispersion of 5% has been pro-
voked as a simulation of noise, and the same drop-out 
has been provoked so that the transformed curve 
could be understood as an anomalous flight (Fig. 10). 

 

Figure 9. The Reconstituted Curve. 

The relative error was about 5% (Fig. 13). If the 
same problem is solved by interpolating linearly the 
drop-out segment, instead of using the neural net-
work, the relative error increases to 13%. 



 
Figure 10. An Anomalous Actual Curve. 

In order to decide when the training should be 
actually stopped, it was used the cross validation 
method (Fig. 11). 
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Figure 11. The Cross Validation. 

This approach diverges if the difference between 
the nominal and actual curves is strongly nonlinear in 
the drop-out segment (Fig. 12). 

Such situation could occur if the actual trajectory 
is highly anomalous. In this case, the radar system is 
not supposed to recover the tracking and the pro-
posed approach should not be used. In spite of this, it 
has been observed that the neural network interpola-
tion is more suitable than a linear interpolation on the 
drop-out segment, and, in this case, about half of the 
omitted part of the actual trajectory has been cor-
rectly recovered (Fig. 13). 

 

Figure 12. The Neural Network versus a Linear Interpolation. 

Looking forward to enhancing the proposed ap-
proach, one could try another neural network. Instead 
of using a multilayer perceptron to estimate the dif-
ference between the nominal and actual trajectories, a 
spatiotemporal neural network could be wanted to 
carry out it. Such approach is probably more suitable 
for reconstituting a rocket trajectory. 
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Figure 13. The Reconstituted Anomalous Actual Curve. 

A spatiotemporal neural network deals with in-
puts and outputs that are explicit functions of time 
[5], such as a rocket trajectory that can be viewed as 
a time-parameterized trajectory or path in R3. This 
kind of neural network might reconstitute an actual 
trajectory that is more than slightly different from the 
nominal. 

The nominal and actual trajectories increase their 
differences when the rocket is in a burning and at-
mosphere’s phase. The deviation of the trajectory of 
the rocket may be caused by steady wind, wind-gusts, 
atmospheric turbulence, but also by fin misalignment 
and production inaccuracies [2]. With all of this, the 
rocket trajectory is not quite predictable. This is why 
the trajectory reconstitution is complex. 

4   Conclusion 

Despite the fact that this study is in a beginning and 
the result is not quite satisfactory yet, the proposed 
approach could be an alternative way for reconstitut-
ing the rocket trajectory. It takes advantage of its 
simple algebraic structure when compared to the 
ROSI software, which uses complicated analytical 
models. It is preferable to the ROSI when reconstitut-
ing an actual trajectory with noise. In addition, it 
could be extended to others categories of problems 
that are quite similar to the problem of signal loss. 
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